
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

Bachelor Project. Organising the mess in online news comments.

Organising the mess in online news comments

Bachelor Project: Barghorn Jérémy and Ennassih Yann

Abstract

Online debate platforms, especially on news
websites, often offer a great diversity of topics
addressed and related opinions. But they pre-
cisely lack a summarized overall view on the
trends that emerge from the comments. The
need resides therefore in providing better read-
ability for the common reader in order to im-
prove his engagement and ability to quickly
understand the issues at stake. Moreover, the
main topics addressed on such platforms give
a good insight on the content of the discussion
and the extraction of arguments would enable
the reader to precisely catch the core opposi-
tions on a given subject. This requires sum-
marizing the opinions and themes discussed in
those online debates in a concise and visual
way, preferably within a single process. This
challenge meets a real-world demand; such a
project is an opportunity for the media to boost
their content, and on a broader scale, it could
also benefit government institutions to better
inform and to improve citizen participation in
public debates.

1 Introduction

The goal of this project is to assemble existing, effi-
cient and open-source technologies into a complete
automated pipeline that provides the desired com-
ments summarization. The research and tests were
carried out in strict accordance with these criteria
of automation and paid-API independence.

The models involved in this work are exclusively
natural language processing NLP pre-trained mod-
els and sentence transformers. This includes em-
bedding encoders, clustering and classification al-
gorithms as well as large language models. Most
models were run using the Hugging Face trans-
formers pipelines [1]. And word embeddings were
performed with the SBert all-MiniLM-L6-v2 sen-
tence transformer [2]. The model yields vectors of

dimension 384 and was chosen for its performance
and ease of use.

The main work was led around this difficulty
of argument extraction, that is the retrieval of the
argumentative key points of a comment or main
justifications of a claim. “Argument mining” is an
existing field of NLP that aims to provide this be-
havior. But no available and easy-to-integrate tools
were found for this project’s scope. The aim was
then to find “workarounds” using available meth-
ods to achieve this challenging goal of argument
extraction. A multitude of ready-to-deploy summa-
rization and clustering processes were used for this
purpose.

Finally, the extracted arguments had to be for-
matted into a compact visual layout without general
loss of information. This paper strictly follows the
end-to-end build process of the pipeline, from the
datasets creation to the arguments extraction and
topics summarization.

2 Dataset

The first major part of the project was to create
a dataset. The project began from scratch, with
a search conducted to gather sufficient data for
establishing the foundations. The main selection
criterion was a sufficient quantity and quality of
comments in cases where model training would be
necessary. In order to be as general as possible, the
data had to come from a reliable media outlet with
active readers publishing comments, developing
opinions and expressing views.

2.1 Origin of the dataset
There weren’t many datasets on the internet (Kag-
gle) that had data quantity, data quality and were
cost free. That is why the New York Times was
quickly settled on, as it has made available two
datasets containing all the comments and their re-
lated information for relatively recent articles. The

https://www.kaggle.com
https://www.kaggle.com

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Bachelor Project. Organising the mess in online news comments.

first one “New York Times Comments” [3] is made
of comments for articles published between Jan-
May 2017 and Jan-April 2018 and the second one
“New York Times Articles & Comments (2020)”
[4] contains articles between Jan-Dec 2020. The
two datasets were very similar and contained a
large number of features from which the most rele-
vant were selected in order to combine them among
the years.

Dataset Articles Comments
NYT 17/18 approx. 9k approx. 2M
NYT 20 approx. 16k approx. 5M
NYT merged 26 121 6 863 978

Table 1: Number of comments and articles.

Dataset Articles Comments
NYT 17/18 16 34
NYT 20 11 23
NYT merged 6 7

Table 2: Number of features for comments and articles.

In the end, two files were created, one containing
data on articles and the other on comments. Both
are available in a .tsv or in a .parquet format. A
standardization process was carried out beforehand.
The identifier per article was recreated so that it
would be consistent between articles, and the link
to the comment was made to facilitate the search
for comments from an article or vice versa.

Feature Description
ID Unique article identifier (e.g.

NYT-ART-0000000001)
word count Article word count
headline Article headline
keywords List of keywords describing

the content of the article
pub date Publication date
abstract One sentence article descrip-

tion or null

Table 3: Features of the articles table.

Feature Description
commentID Unique comment identifier
articleID Article to which the comment

is related
commentBody Text of the comment
replyCount Numbers of replies to this

comment
recommendations Integer representing a rating

of the comment
userLocation Location the user entered
parentID Reference to the parent com-

ment in case of reply

Table 4: Features of the comments table.

2.2 Dataset processing

In addition to the creation of the two abundant
datasets, comments were classified among 7 emo-
tions together with a confidence score in [0,1] us-
ing the emotion-english-distilroberta-base

model and the Hugging Face pipeline [5]. This
labeling allows a first insight on each comment
and yields an initial comment differentiation that is
always useful for further data analysis.

The articles, in turn, were useful to separate
the comments into several clusters along similar
headlines. High dimensional data graphical rep-
resentation was made possible with the help of
the TensorFlow embedding projector [6]. A qual-
itative analysis then proved the clustering to be
much more effective when using the headline em-
beddings than the average keywords embeddings.
Comments were subsequently split into 138 clus-
ters using the util.community detection fast
clustering method of SBert with a cosine similarity
threshold of 0.5.

Those clusters were then processed to remove all
hyperlink HTML tags as well as username tags in
case of a reply. This was done to further standard-
ize the datasets but is actually not necessary as the
removed elements possibly contain useful informa-
tion. The reply attribute of a comment is still kept
by a simple null check of its parentID value, so this
data processing does not prevent future work that
needs to focus on entire reply sets.

2.3 Final dataset

The main research and implementation work was
performed on the 138 comments clusters (see 2.2).
The average number of comments per cluster is
8000 comments, with the smallest cluster contain-

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

Bachelor Project. Organising the mess in online news comments.

ing about 80 comments and 330 000 for the biggest
one. The clusters together hold a total of 2 687 612
comments related to 7165 articles.

An example of some clusters can be found in the
following table. The top three were the most used
sets for fine-tuning and any extraction work.

Cluster Theme Comments nb.
0 Covid 330 000
3 Joe Biden 140 000
132 George Floyd 10 501
133 Book reviews 2 100

Table 5: Comments clustered by theme.

The attributes of each cluster entry were kept
similar to the original exhaustive dataset of com-
ments (see 2.1), including now the label and score
emotions classification.

New features Description
label classification among 7 emotions
score classification precision ∈ [0, 1]

Table 6: Additional features for the comments.

2.4 Datasets for fine-tuning
In addition to the New York Times dataset used,
two new datasets were created in order to fine-tune
models for argument and topic extraction. These
files contain two features : Question and Answer. A
suitable size for training a large Flan-T5 language
model with 780 million parameters is 15 000 ques-
tions with answers. Based on this information the
comments were used to create the questions and
then a fast way to label the data (find the answer)
was needed. The Openai API was a suitable so-
lution, as its descriptive power was good enough
to provide a convincing result. The model used to
provide the answers was the gpt-3.5-turbo.

The first set of instructions was designed to teach
the model to transform a comment, which may be
very long, to a short, concise argument (1 sentence)
containing the essential information. The second
set teaches the model to find the main topics (ide-
ally 3) from a short, concise argument.

The comments used where taken from the cluster
containing articles about Joe Biden, as they mostly
contain well-structured arguments on a variety of
subjects. The comments are then filtered by length,
removing the ones that were shorter than a sentence.

All replies were removed too, in order to take only
the initial comments. Finally, a minimum recom-
mendation threshold of 20 was used to obtain only
comments of sufficient quality.

Each datapoint was then sent to the Ope-
nai API to retrieve the desired output. The
gpt-3.5-turbo API takes a system behavior
(which will impact the way the model answers)
and a sentence as input and returns the response.
For the arguments dataset, the system behavior
was You are a 1 short sentence argument

extractor. Only provide the answer. and
the template sentence added in front of each
comment was Extract the main argument

of this comment: [comment]. In a similar
manner for topics, the system behavior was set
to Answer only in the format of a python

list containing 3 elements. and the tem-
plate sentence added was Given this argument

extract the 3 main topics? [argument].
The gpt-3.5-turbo model costs $0.002 for 1k
tokens. The dataset of comments to arguments,
once transformed, consumed 2.8M tokens (ques-
tions and answers included) at a cost of $5.6. The
arguments to topics dataset, once transformed,
consumed 1.5M tokens at a cost of $2.9.

3 Argument extraction

Formally, from [7], Argument Mining is a “field
of corpus-based discourse analysis that involves
the automatic identification of argumentative struc-
tures in text”. However, given this task, state of the
art models do not offer the option of an efficient de-
ployment yet. So to get as close as possible to this
desired behavior, several methods were performed
and analyzed on our datasets, from extractive sum-
marization to large language models.

3.1 Conventional approach

As word2vec transformations are very powerful
for clustering and similarity comparison in NLP,
the first approach taken was to determine if word
embeddings are already capable of encoding the
argumentative layout of a comment. A quali-
tative study with the comments dataset and the
all-MiniLM-L6-v2 transformer [2] was conducted
to tackle this matter. Comment embeddings were
projected in 3D and 2D spaces, using the PCA,
UMAP, T-SNE algorithms in TensorFlow [6], in or-
der to identify potential natural clusters; and most
importantly, their precision when it comes to hold

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Bachelor Project. Organising the mess in online news comments.

the argumentative core structures of the comments.
In addition, iterative K-means clustering was used
to recursively split the comments into small chunks
to highlight potential embedder abilities to catch
argumentation rather than main keywords above
a certain similarity threshold. This analysis did
however not reveal any of these behaviors.

Another methodology was to perform
summarization techniques on the comments.
Both facebook/bart-large-cnn [8] and
google/pegasus-cnn-dailymail [9] models
were tested for this purpose. For most of the
longest comments, these methods were able to
provide a good summary, but results were often
too extractive and focused on a few sentences
without including the argumentative content of the
comment.

Nevertheless, in these attempts to satisfactorily
extract arguments, it is important to keep in mind
the limitations of a qualitative study.

3.2 Approach using LLM’s
After the more conventional approach with basic
tools and given the fact that there was no existing
pretrained model available and ready to use, the
decision to try Large Language Models or LLM’s
was taken. LLM’s are a suitable option because
they have become increasingly accessible, have the
ability to answer abstract questions and cover a
more varied field. Because their training is based
on huge datasets, they also have significant descrip-
tive power which, if properly applied, could help
us achieve the desired result.

From the most advanced models available, nu-
merous prompts were tested to obtain an appropri-
ate and consistent result on a number of questions.
They were tested on the different Flan-T5 variants
(large, xl, xxl) [10] and on the Stanford Alpaca [11]
model.

Model Parameters Size
Flan-T5 large 780M 1.8k
Flan-T5 xl 3B 1.8k
Flan-T5 xxl 11B 1.8k
Stanford Alpaca 7B 52k
gpt-3.5-turbo 175B unknown

Table 7: Size comparison between different models in
terms of number of parameters and size of instruction
set.

The approach worked not as well as expected
since major difficulties were encountered in forc-

ing the model’s output to be consistent even if
the prompts used were the ones that came directly
from the instruction set. For example, the result
depended too much on the comment used, and the
model opted to summarize or simply extract some
parts instead of giving an actual argument. The
output format was inconsistent, and the short sen-
tence requirement was never respected. Sometimes
the model tended to hallucinate, incorporating er-
roneous or irrelevant information into the output.

The same tests were carried out on the
gpt-3.5-turbo, but this time with good results.
The argument covered the important points well,
summarized the comment in a short sentence and
was consistent on several inputs. The result is not
surprising given that the model has 15 to 200 times
more parameters and has several fine-tuning and re-
inforcement learning overlays that the others don’t.

The concern was that the pipeline should not be
dependent on a paid API, because if a real appli-
cation is envisaged, sending user comments and
information to a private organization could be a
problem. A model similar in size to the Flan-T5
large or xl would be more suitable, as it could be
easily deployed on a normal infrastructure while
being less costly.

3.3 Adopted solution

Finally after a long period of testing the decision
to try to fine-tune a Flan-T5 was taken. A dataset
has been specially created (see 2.4) to teach a new
instruction to the existing model to specialize it
in argument extraction. Fine-tuning was carried
out in less than 3 hours on a Flan-T5 large, as this
was the largest model that could be loaded on a
single NVIDIA A100-SXM4-40GB GPU. In the end,
we obtained an LLM that has all the vocabulary
and the ability to construct well structured sen-
tences, while applying it to argument extraction.
We performed the same tests as on the other mod-
els and the results were very convincing. Outputs
are not as good as those of the gpt-3.5-turbo,
but they by far outperformed all other non-tuned
versions. The model may have a tendency to write
long sentences if the comment is long, but there is
no more concern about hallucinations or inconsis-
tency in the output. Moreover the result is always
shorter than the initial comment and is able to find
the main argument. The fine-tuned version is also
able to detect sarcasm in certain cases and provides
an argument that is in line with the meaning of

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

Bachelor Project. Organising the mess in online news comments.

the comment. The template sentence used to trig-
ger the argument extraction is Extract the main

argument of this comment: [comment].

4 Topic extraction and summarization

Extracted arguments now facilitate the construction
of a hierarchical structure of the topics. The goal
to achieve here is to build a tree-like layout where
topics contain multiple arguments linked to their
original comment. This last layer completes the
pipeline and provides a visual and summarized
presentation of a set of comments to the reader.

4.1 Prompt engineering

A non-trivial part of this pipeline subtask is to
extract a few main topics from arguments, as they
need to encapsulate all the relevant information in a
very short number of words. A first available model
valurank/MiniLM-L6-Keyword-Extraction

[12] enabled a simple keywords extraction. This
offers great output consistency but includes
irrelevant words for the desired purpose of topic
extraction.

Topic extraction prompts were then given to the
Flan-T5 [10] and the Alpaca 7B [11] models. The
prompts were strongly inspired by the 52k instruc-
tions fine-tuning set of Alpaca and oriented to con-
strain the outputs to a certain consistent format.
The extraction was performed on single argument
inputs and argument lists, as well as on the original
comment bodies. The Alpaca model offers a good
trade-off between topic length and relevancy, yet
the generated tokens are still not as consistent as
desired along multiple runs.

On another note, these models hardly under-
stand number constraints given in the prompt, e.g.
Generate the 3 topics of this text. A fur-
ther step in this work should be to delve into con-
strained beam search, implementing for example a
custom subclass of Constraint of Hugging Face
[13] to force the model to generate some specific
tokens.

4.2 Fine-tuning

In the same way as for part 2.3 after some unsuc-
cessful testing on various prompts the decision was
taken to fine-tune a second Flan-T5 large model
in order to do topic extraction. The input that
can be used to trigger the model to fulfill this
task is : Given this argument extract the 3

main topics? [argument]. The output will be

in the format of a python list since this was the best
solution to force the model to be consistent. The
boundary of 3 topics is not always respected by
the Flan-T5 if the input arguments are long but the
output is convenient enough since these topics are
clustered and only the ones that appear the most
will be selected at the end to be displayed.

4.3 Topic clustering

In the previous work of topic extraction, the follow-
ing process was also tested : at each model input, a
prompt with a topic list and new arguments were
given with the task to update that list. This task
would enable us to return a final list of topics for
any given set of arguments but it turned out to be
too complex, even for state of the art models such
as GPT 3.5.

Once the topic extraction instructions were cre-
ated (see 2.4) and the output format set, the final
step was to perform topic clustering in order to
reduce the number of topics covered into a short
set of main themes. The TensorFlow projector [6]
and the K-means algorithm were used for this pur-
pose. But there remained one challenge : how to
annotate each cluster with the best terms, i.e. how
to choose the pipeline’s top layer words that will
be displayed to the reader ? Once each cluster is
obtained, a pairwise cosine similarity can be com-
puted between the topics, mapping each topic to
a score. The topic with the biggest score is then
selected to describe the entire cluster. A similar
process is already integrated in the final retained
solution.

For the end pipeline the method selected to clus-
ter the main topics was the community detection
from the SBERT Sentence Transformer library.
The util.community_detection takes a similar-
ity threshold that was set to 0.60 and the minimal
community size is adjusted dynamically based on
the number of topics in input. The best commu-
nity size is computed with different starting points
based on the amount of data to handle and then a bi-
nary search is performed in order to show between
5 and 10 main topics. Besides the efficiency of
this method, it also yields each cluster with topics
sorted by similarity scores in decreasing order. The
two most “centered” topics were then chosen to
describe each community, completing therefore the
pipeline.

Another studied but not used promising ap-
proach is to perform an agglomerative clustering on

https://sbert.net/docs/package_reference/util.html

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

Bachelor Project. Organising the mess in online news comments.

the topics, which directly returns a tree-like struc-
ture : the user only needs to decide the number
of different topics to display and the pipeline then
runs through the tree to the layer with the desired
number of clusters.

5 Web-application : presentation and
features

The ultimate aim of this research project was to
propose a web application that would enable all
the work carried out to be visualized. Once the
data pipeline had been defined and all the com-
ponents required to process comments were func-
tional, everything was put together in a Streamlit

web-page. The aim of this website was to present as
faithfully as possible a concrete implementation of
our project to an existing newspaper. This means
that it is possible to select an article from those
available, read the comments and see directly what
our pipeline has provided in order to summarize
this large mass of information. We can compare
side by side the input and the result to see that with
the new tool we are able to faster understand the
main ideas coming from the comments in a shorter
time period.

5.1 Pre-processing and on demand
computation

Given that the amount of articles and comments
available to us is huge, not everything was prepro-
cessed in terms of argument or topic extraction. By
going through the web-app there are some clusters
(Cluster 3 and Cluster 132) that were pre-processed
and others that are not. However, in order to be
consistent the data pipeline is available for all clus-
ters. That’s why it’s possible to load pre-trained
models into memory (RAM or G-RAM) and per-
form the analysis live on the CPU or GPU (the
app will automatically select the best available re-
sources). Sliders can be used to select the number
of comments to be processed, as this can be very
time-consuming. This feature also allows us to see
how our pipeline dynamically adapts to the data
received.

5.2 Data pipeline implementation

Firstly, the application has access to various arti-
cles in the form of clusters (see 2.2) and allows
their contents to be viewed. A user can select a
specific article or the entire cluster to continue
his analysis. Depending on the selection some

information is displayed : article identifier, key-
words, publication date, abstract if it exists and
a bar chart showing an emotion analysis of the
cluster and/or the article (see 2.2). In the center
of the page there are the comments related to the
user’s selection. If pre-processing was done on this
cluster or if the user triggered the processing of
some data, a section showing the main topics ap-
pears. These main topics are derived from the adap-
tive community detection performed on the topics
(see 4.3). Topics were generated from arguments
with the Flan-T5-topics (see 4.2) model and ar-
guments were generated from comments with the
Flan-T5-arguments (see 3.3) model. The user can
then select one or more main themes and the cor-
responding information is displayed (Arguments,
Comments and Emotions). The data within a theme
can then be sorted according to emotions to provide
a better understanding of the information. Note
that the community detection step of the pipeline
is never pre-processed.

5.3 Single article or multi document
summarization

Since the implemented pipeline is very general it
is easy to feed it with multiple articles as input
and then wait for the community detection to find
the main topics. This feature is available on the
app if the Select all articles in cluster

checkmark is selected. The amount of data to
handle can be huge for example Cluster 1 about
Covid-19 contains 375 000 comments and we thus
have approximately 1M topics to cluster. This
step is currently not parallelized or optimized and
can take some time. If the Cluster 3 about Joe
Biden is selected and all the 210 articles and 140
000 comments are processed, the 5 main topics
found are : [’Biden administration / Biden

not as sharp as Clinton’, ’Presidential

behavior / nominee to defeat Trump’,

’Voting’, ’Joe Biden blew it / Joe Biden

as a creep’, ’Donald Trump / Voting for

Democratic candidate’] Note that for a main
topic the two first topics of the community are
displayed if they are different.

5.4 Backend
In the case where the arguments and/or topics
are not pre-processed there is always a possibil-
ity to load the models Flan-T5-arguments and
Flan-T5-topics in the background to analyze the
data. This can be done in the Control tab of the

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

Bachelor Project. Organising the mess in online news comments.

web-app. One model takes approximately 6GB of
G-RAM on a NVIDIA TITAN Xp 12GB and is able
to process 1 comment or argument per second.

6 Conclusion

The aim of this semester project was to find a way
of making the comments section under newspaper
articles more user-friendly and readable. Using
natural language processing and avoiding human
assistance in the pipeline, we developed a method-
ology that can handle huge data amounts in order
to extract relevant arguments and summarize the
discussed content into main topics.

Four main themes were tackled during these
14 weeks. First, there was the need to create a
dataset meeting the requirements for the rest of
the project. Secondly, we had to develop meth-
ods for extracting arguments that were previously
non-existent. Then the knowledge acquired in the
field of argument extraction was reused and ap-
plied to topic extraction. Finally, in order to better
visualize this gigantic mass of data and to verify
that our implementation was functional, a website
was developed to bring together all the elements
mentioned above.

The results obtained are difficult to evalu-
ate, since the extraction of arguments or topics can
only be tested subjectively by reading the mass of
comments and doing the analysis work manually.
However, after numerous tests and discussions with
the project supervisors, we have come to the con-
clusion that the results are satisfactory for the task
in hand and the final rendering shows off all the
work done.

This research work presents one way of do-
ing things, but many other decisions could have
been made throughout the thought process, and
many points are open to improvement. The project
can be seen as proof that the means currently avail-
able are sufficient for a reliable, effective imple-
mentation applicable to the real world in real time.

The future limitations we can envisage with
this approach is the political neutrality of training
sets. Indeed, training sets influence the way models
behave, and will emphasize information. In addi-
tion, we may wonder to what extent a newspaper
will be able to use this real-time analysis to choose
its hedlines and strongly influence the public de-
bate. This information will make it possible to
write only articles that arouse certain emotions or
target a certain type of reader, and we will need to

think about the ethics of this tool since it is initially
designed for the reader.

7 Acknowledgements

We would like to express our sincere appreciation
to the project supervisors, Dr. Rémi Lebret, Dr.
Léo Laugier and Stéphane Massonet, for their sup-
port throughout our bachelor project. Their exper-
tise and help have been instrumental in shaping the
direction of our research and ensured its successful
completion.

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

Bachelor Project. Organising the mess in online news comments.

References

1. Face, H. Pipeline for machine learning mod-
els https : / / huggingface . co / docs /

transformers/main_classes/pipelines.
2. SBert. 384 dimensional word embedding

https : / / huggingface . co / sentence -

transformers/all-MiniLM-L6-v2.
3. Kesarwani, A. New York Times Comments

https : / / www . kaggle . com / datasets /

aashita/nyt-comments.
4. Dornel, B. New York Times Articles Com-

ments (2020) https://www.kaggle.com/

datasets/benjaminawd/new-york-times-

articles-comments-2020.
5. Hartmann, J. Emotion English

DistilRoBERTa-base 2022. https : / /

huggingface.co/j- hartmann/emotion-

english-distilroberta-base.
6. TensorFlow. High-dimensional data visual-

ization https://projector.tensorflow.

org/.
7. Chakrabarty, T., Hidey, C., Muresan, S., Mck-

eown, K. & Hwang, A. AMPERSAND: Argu-
ment Mining for PERSuAsive oNline Discus-
sions 2020. arXiv: 2004.14677 [cs.CL].

8. Lewis, M. et al. BART: Denoising Sequence-
to-Sequence Pre-training for Natural Lan-
guage Generation, Translation, and Compre-
hension. CoRR abs/1910.13461. arXiv: 1910.
13461. http : / / arxiv . org / abs / 1910 .

13461 (2019).
9. Zhang, J., Zhao, Y., Saleh, M. & Liu, P. J.

PEGASUS: Pre-training with Extracted Gap-
sentences for Abstractive Summarization
2019. arXiv: 1912.08777 [cs.CL].

10. Chung, H. W. et al. Scaling Instruction-
Finetuned Language Models 2022. arXiv:
2210.11416 [cs.LG].

11. Taori, R. et al. Stanford Alpaca: An
Instruction-following LLaMA model https:
/ / github . com / tatsu - lab / stanford _

alpaca. 2023.
12. Valurank. Keywords extraction based on

SBert MiniLM-L6 model https : / /

huggingface.co/valurank/MiniLM- L6-

Keyword-Extraction.
13. Face, H. Transformers generation utilities

: constrained beam search https : / /

huggingface . co / docs / transformers /

main/en/internal/generation_utils#

transformers.Constraint.

https://huggingface.co/docs/transformers/main_classes/pipelines
https://huggingface.co/docs/transformers/main_classes/pipelines
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://www.kaggle.com/datasets/aashita/nyt-comments
https://www.kaggle.com/datasets/aashita/nyt-comments
https://www.kaggle.com/datasets/benjaminawd/new-york-times-articles-comments-2020
https://www.kaggle.com/datasets/benjaminawd/new-york-times-articles-comments-2020
https://www.kaggle.com/datasets/benjaminawd/new-york-times-articles-comments-2020
https://huggingface.co/j-hartmann/emotion-english-distilroberta-base
https://huggingface.co/j-hartmann/emotion-english-distilroberta-base
https://huggingface.co/j-hartmann/emotion-english-distilroberta-base
https://projector.tensorflow.org/
https://projector.tensorflow.org/
https://arxiv.org/abs/2004.14677
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/2210.11416
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/valurank/MiniLM-L6-Keyword-Extraction
https://huggingface.co/valurank/MiniLM-L6-Keyword-Extraction
https://huggingface.co/valurank/MiniLM-L6-Keyword-Extraction
https://huggingface.co/docs/transformers/main/en/internal/generation_utils#transformers.Constraint
https://huggingface.co/docs/transformers/main/en/internal/generation_utils#transformers.Constraint
https://huggingface.co/docs/transformers/main/en/internal/generation_utils#transformers.Constraint
https://huggingface.co/docs/transformers/main/en/internal/generation_utils#transformers.Constraint

9

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

Bachelor Project. Organising the mess in online news comments.

8 Appendix

Figure 1: Control panel allowing to start the Flan-T5
models in memory.

Figure 2: Control panel showing article information.

Figure 3: Control panel showing article information.

Figure 4: Control panel showing article information.

10

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

Bachelor Project. Organising the mess in online news comments.

Figure 5: Main page showing the comment body for the selected article and the main topics found by the pipeline.

Figure 6: Section showing the extracted arguments and emotions for the topic ”Biden administration”.

